-16t^2+40t=4

Simple and best practice solution for -16t^2+40t=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+40t=4 equation:



-16t^2+40t=4
We move all terms to the left:
-16t^2+40t-(4)=0
a = -16; b = 40; c = -4;
Δ = b2-4ac
Δ = 402-4·(-16)·(-4)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{21}}{2*-16}=\frac{-40-8\sqrt{21}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{21}}{2*-16}=\frac{-40+8\sqrt{21}}{-32} $

See similar equations:

| 14-(3p-1)(2p+3)=17-(p+1)(6p-6) | | X2=625,x= | | 7x=15-9x=-5 | | X2=625x= | | 19=r/9 | | -145=2p+5(7p+14) | | -145=2p+5(7p= | | 8(3x-4)=5x+7(6x-9) | | y=(0.00008*37^4)-(0.0151*37^3)+(0.8983*37^2)-(18.083*37)+176.24 | | y=(8E-05*37^4)-(0.0151*37^3)+(0.8983*37^2)-(18.083*37)+176.24 | | 8y+5=-1+6y | | 2n+5(2n-4)=30 | | 0.001x-0.002x=0.07998 | | 23x+297=7 | | 295=5-v | | 9x+4=-3+7x+25 | | f(0)=4(0)-6 | | 2-3x÷4=(-7) | | F(t)=t^2+2t-35 | | 4^(3x−1)=5 | | |x-7|=26 | | 2x=-8-x | | 7+k/4=12 | | 64-48m=-96m/2+96 | | 9x-(4x-3)=18 | | X+3+x+1=4(x+1 | | 19(x-87)+7=3x-12 | | (t+9)/(2)=(5t-7)/(10) | | f’(-4)=-4^3 | | -4/3w+1=-1/5w-4/5 | | (4x)/x-1+1/3=5/6+(4)/x-1 | | (3x/4)=7-x |

Equations solver categories